Level sets and minimum volume sets of probability density functions
نویسندگان
چکیده
منابع مشابه
Level sets and minimum volume sets of probability density functions
Summarizing the whole support of a random variable into minimum volume sets of its probability density function is studied in the paper. We prove that the level sets of a probability density function correspond to minimum volume sets and also determine the conditions for which the inverse proposition is verified. The distribution function of the level cuts of a density function is also introduc...
متن کاملLearning Minimum Volume Sets
Given a probability measure P and a reference measure μ, one is often interested in the minimum μ-measure set with P -measure at least α. Minimum volume sets of this type summarize the regions of greatest probability mass of P , and are useful for detecting anomalies and constructing confidence regions. This paper addresses the problem of estimating minimum volume sets based on independent samp...
متن کاملMinimum Volume Enclosing Ellipsoids and Core Sets
Abstract. We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p1, p2, . . . , pn} ⊆ Rd. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd3/ ) operations for ∈ (0, 1). As a byproduct, our ...
متن کاملLevel Sets and Distance Functions
This paper is concerned with the simulation of the Partial Diierential Equation (PDE) driven evolution of a closed surface by means of an implicit representation. In most applications, the natural choice for the implicit representation is the signed distance function to the closed surface. Osher and Sethian propose to evolve the distance function with a Hamilton-Jacobi equation. Unfortunately t...
متن کاملLevel Sets of Functions and Symmetry Sets of Surface Sections
We prove that the level sets of a real C function of two variables near a non-degenerate critical point are of class C [s/2] and apply this to the study of planar sections of surfaces close to the singular section by the tangent plane at an elliptic or hyperbolic point, and in particular at an umbilic point. We go on to use the results to study symmetry sets of the planar sections. We also anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2003
ISSN: 0888-613X
DOI: 10.1016/s0888-613x(03)00052-5